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SUMMARY

The engineering method of Schischka for the determination of
the maximum allowable hydrostatic pressure producing flastic deformation
of a closed circular cylindrical. shell stiffened by equally spaced cir-
cular rings of identical geometric and elastie properties has been
extended to include the beam~column" effect of the axial portion of
the load on the cylinder and the Viterbe effect.

Determination of the maximup allowable pressure for three
cylinders whose physical properties lie within the range of interest to
the naval architect indicates that the maximum allowable pressure in
some cases may exceed considersbly the elastic limit pressure, Further-
more, it is shown that for high yield surength materials the maximum
allowsble and elastic limit pressures, as well as their difference, cal-
culated with the beam-column effect included, may be appreciably smaller than
the corresponding quantities obtained with the beam~column effect neglected,
A simple measure of the beam-columm effect is shown to be the ratie of the

pressure applied to a cylinder to the eritical pressure for the cylirder

with rings disregarded,




INTRODUCT ION

The maximum allowable hydrostatic pressure which a reinforced
c¢ylindrical shell can withstand without danger of collapsing due to ex-
cessive plastic deformation is of particular interest to the naval
architect. In Ref. (1) Schischka has presented an engineering approach
to this problem which is somewhat similar to the method used in tho limit
design of beams and which is based upon the von Mises maximum shear strain
energy criterion for plastic deformation {Ruf. (2)). Schischka obtains the

elastic limit pressure pL by applying the von Mises criterion to ths
("]
axial and . ‘reumferential stresses which occur at the intersection of the

shell snd ring frame., However, the maximum allowable pressure P, is
obtained by coneldering that residual stresses are induced by a pgeliminary
loading, unloading, and subsequent reloading of the cylinder and by the
application of the von Mises criterion at the intersection of the shell and .
ring frame as well as at a plane midway between the rings. 4Although the re-
sults presented in Ref, (1) indicate that the maximum allowable pressure
may exceed the elastic limit pressure by a considerable amount, this need
not, be the case when high strength alloys zre used for shell construction,
In the present roport, the "beam~column" effect of the axial load has been
included so that the elastic limit pressure P and the maximun allowable
pressure p_ used here correspond to the elastic limit pressure and maximum
allowzble pressure of Ref. (1) which have been designated horein for conven—
s ience as ;:'Lo and pao s respoectively, For cases where high strength alloys

are used the beam-column effect of the axial portion of the load, which was

omltted in Schischka's work, may be very significant,




It is the purposs of the present report to modify the eguations
of Ref, (1) so as to include the complete effect of the axial load as well
as the Viterbo effect described in Ref, (3).

The authors are indebted to Professor N.J. Hoff for his guldance
and critieism and to Messrs J.G. Pulos and K,A.V. Pandalai for their ald

in performing the calculations for this investigation,
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cross sectional area of reinforeing ring
parameters

£t 3/12(2-v°)

Young'!s modulus

shesar modulus

moment of inertia of shell plating per unit circumferential length
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half length of unsupported shell of a typical bay

bending moment per unit circumferential length of shell

applied axial tensile force per urit circumferential length of shell
shear strain energy per unit volums

shear strain energy per unit volume in shell at imner surface at ring.

shear strain energy per unit volume in shell at outer aurface at
plane mid-way between rings

elastic limit shear strain energy per unit volume
radius of median surface of shell
faying width of ring
2 (p/4)]l/2
(k° + (p/t.)]l/2
cL
dL,
[3(1-v)/a%t

perameters

2 1/4

hydrostatic pressure




slastic limit pressure, nec beam—~tolumn effect

Py,
o)
P, maximum allowable pressure, no beam—column effect
0
pL elastic limit pressure, beam~cclumn effect included
a
" P, maximum allowable pressure, beam~column effect included
— 2..1/2
I 2 e e
cr
t shell thicknees
w radial deflection of shell, positive outward
— 2
w = [1-(v/2)1(pa"/Et)
b'd axial ccordinate of point on median surface of shell
n = Azjcl*LB/’t
9 jnelastic rotation of axial shell elements at rings
v Poissonts ratio

p = ~(5/D) = pa/2D
0'1,02 principal stresses

yield stress for uniaxial tension or compression

o
L
Ux,o@ total axial and circumferential stresses, respectively, positive
in tension
oi ) g i axisl and circumferential stresses, respectively, at inner
Xp ®, surface of shell at rings

2 g‘po axial and circumferential stresses, respectively, at outer
*m  surface of shell at plans mid-way between rings




BASIC THEORY AND ASSUMPTIONS

In the present analysis of a transversely reinforced cylindrical
shell loaded by hydrostatic pressure of a magnitude sufficient to cause
yielding of the shell material, several simplifying assumptions are made.
The reinforced shell is considered to be of infinite extent in its axial
direction and to be subdivided into ldentical bays by rings of identical
geometric and elastic properties (see Fig. (1))s The uniform shell thick-
ness is considored small compared to the radius of the median surface of
the shell, which in turn is assumed %o differ negligibly from the radius
of the median line of the ring, The hydrostatiec pressure lcad is taken
as constant over the entlre structurs, and hence for a pressure less than
that which would cause instability, it produces axially symmetric deforme
ztiona, The magnitudes of these deformations are considered to be of the
order of the skin thickness, Thus the well-knowsn ordinary differential
equation for amall axially symmetric deflections of thin-walled circular
oylindrical shells can be applised to the analysis of elastic portions of
the «ylinder (see Refs. (3) and (4)).

As in Ref, (1), in the present report the maximum shear strain
energy is considered as the criterion for yielding of the sheil material,
Thus any element of the shell is considered incapasble of resisting further
stresses once the shear strain energy per unit volume of that element
becomes eoual to a value predetermined by experiment, This value depsnds
upon the elastic properties of the shel) material and is taken as that
value of the shear strain energy per unit volume at which ylelding first
occurs during a uniaxial tension or compression test of a sample of the

material used,
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It has been shown in Ref. (1) and it will be assumed here that
for a given hydrostatic pressure the shear straln energy, considered as a
function of the axial coordinate of the shell, has two distinct maxima,
one at a ring and one at a plane mid-way between two successive rings for
those gylinders characteristic of naval construction. The shear strain
energy in the neighborhood of a ring rises sharply to a maximum at the
inner surface of the shell, whereas the energy at the plane between rings
rises gradually to a second but lower maximum at the outer surface of the
shell, Thus with increasing hydrostatic load the shear strain energy will
reach its maximum permissible value first at the inner surface of the shell
adjscent to the rings, With further increase of load, the plastic zone which
accompenies the preseribed value of the meximum shear strain energy expands
in a direction normal to the shell surface as well as parallel to the shell
axis. Simultaneously, the shear strain erergy approaches its limit value
at the outer surface of the shell mid-way between rings. Ioading is consldered
to be maximum when the maximum permissible shear strain ensrgy per unit
volume is obtained at the latter lecation, Because of the rapidly changing
value of the shear strain energy at the rings, it is reasonable to assume
that the axlal spread of the plastic zone in this neighborhood is confined
to a narrow region within which all plastic deformation takes place. To
facilitate a simple mathematical formulation of the problem of the inelastie
behavior of the cylinder, this region is considered to be of infinitesimal
extent., Consequently, except for the edges in contact with ths rings, the
entire shell may be treated as an elastic body, and the problem is reduced
to the determination of the state of stress in a typical bay stressed by
hydrostatic pressure as well as by deformations along the edges in contact
with the rings.




These basic ideas and assumptions may be integrated from an
alternative point of view if the following fictitious precess of loading
of the cylinder is imagined, Sufficient pressure is applied so that the shell
yields at the rings but is stressed just within the yleld limit at the plane
midway between rings. Hence, except for infinitesimal strips at the rings;
the shell remains elastic. Next the applied load is remove¢ 1, Since yielding
occurred at the rings during the loading process, permanent distortions of
the shell at the rings in the fcrm of radial deflections, circumferential
strains, and rotations of the axial elements are present after the load is
removede These permanent distortions at the rings result in "residual"
stresses in the remsining elastic portions of the cylinder which has been
restrained from returning to its ériginal unstressed position, If the
Jylinder is loaded once more, this load may be equal to or less than the
previous load without inducing further inelastic distortionss However,
the stresses in the slastie shell now consist of the residual stresses
from the unloading process and the additional elastic stressee caused by
the second application of loads Any increase in pressure above the orig-—
inally applied pressure will cause- further permanent distortions in conjunc-
tion with yielding at the planes mid-way between rings. Thus the maximum
allowable pressure is defined as the maximum hydrostatic pressure which can
be spplied to a cylinder and which produces ylelding at the outermost fiber
at a plane mid-way between rings, This pressure, together with the inelastie -
edges distortions, produces total stresses (residual plus elastie) satisfying
simaltaneously the yield criterion at both the inner surface of the shell at
the rings and the outer surface of the shell at the -plane mid-wmay between
succossive rings. Consequently, the problem is reduced to the detemmination
of the state of stress and subsequently the shear strain ensrgy in a typlical
bay consisting of an elastic shell supported at its edges by inelastic strips

of shell which tranamit the load to slastic rings.
-8 .




DETERMINATION OF SHELL STRESSES
Deflections of an Elastic Shell

In order to calculate the stresses in an elastic shell, the de-
flections must first be found, In accordance with the assumptions made
these deflesctions must satisfy the following fourth order linear differ-

ential equation with constant coefficients [ see Refs. (3) and (4).]:

4 2 "

dw _Sdwn Et B _ ¥S |
-—--—-—2+ W = o - (l)

dx;' D dx a“D D ab

in which w is the radial deflection of a point on the medlan surface of
the shell of radius a [see Figs, (1) and (2)], x the axial coordinate of the
point, p the applied hydrostatic pressure, S the applied axiasl tensile force
per unit circumforential length given by 5 = —pa/2, v Poisson's ratio, t
skin thickness, and D the bending rigldity of the skin per unit length.

The general solution of equation (1) contains four arbitrary con—
stants; and consecuently four boundary conditions are required to determine
these constants, However, if the symmetry of loed and astructure is con-
sidered and if the origin of coordinates is chosen midway between two ring
frames as shown in Fig. {2), only even functions of the axial coordinate x
are retained in the solution, and this sutomatically removes two avbitrary '

constants frem the solution. The solution may then be given as
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wm Aco3g dx cosh ex + B sin dx sinh ex - % (

where A and B are constants of integration and
¢ = 0o/
d = [k (p/4)]
p= (5/D) = pa/2p

1/2 (3




The first boundary condition to be satisficd is the requiremsnt
that the ring and shell must deflect radially the same amount where they
are in contact at x = L. In Ref, (3) it was found that thils conditlen is

satisfied if

W, = (b/28)T ( Dy, = 20K*) (4a)

d3w
de
where

A = AL+ bt

A is the cross sectional area of a reinforcing ring
b 1s the width of the ring faying surface

K = 301 = v)/(at)?

% = {2 v)pa2/2Et

Equation (4a) includes the Viterbo effeet, which accounts for the influence
of the axial load on the ring Vdeflection [Refs (3)1,

The other boundary condition is that at the rings the shell rotates
through some finite angle 9 because of plastic deformation through an in-

finitesimal strip of shell plating adjacent to the rings. Consequently,

aw .
5% = 9vhen x = L (4b)

Equations (2), (4a) and (4») when solved simultanscusly yield the

solution for the deflection w(x):
w(x) = (2/K2){{ck(wr + W)=Cp9Llcos £x/L cosh ex/L +

+ [CB(Wr + W) o+ C,8L]sin £x/L sinh ex/I:’i -




where

8 = cL, £ = dL

Cl = ¢cos [ cosh ¢
= gin f sinh e
GBafsinfcoshe-ecosfsinhe

Cauesinfcoshe+fcosfsinhe

and

we+ W= K, (KO0 4 nKZW]

P RS R TR I AR

D e T

where
7 - ArkALB/t,
k) - ofx, - (1/2)(s2 - 92)K2
Ky = 1/[ Am‘.‘(z/Ar + ef(ea:2 + fz)(cosh 2e¢ ~ cos 2f)]
K =6 sin 2f + f sinh 2e (5b)
K3=e sinh 2¢ - f sin 2f
It mey be noted that equation (2) is only one of three possible
trigonometric and hyperbolic forms of solution of equation (1) and involves
no imasginary cuantities if ¢ is real (k2> p/L)- If ¢ is imeginsry then
cosh ex/L, and sinh ex/L, respectively, may be replsced by cos ex/L and
sin ex/L; end if ¢ is zero, they may be replaced by unity and x. Only that
form of solution of equation (1) which is given by equation (2) requires con-
sideration for the present analysis, Forgs= 0, detailed descriptions of each

of the three solutions are given in Ref, (3)a




Stresses in the Shell

The stresses in the elastic shell can n‘ow be obtained from
equation (5). In the axial direction the total stress consists of a
uniform axial compressive stress apd a bending stress which is linearly
distributed across the shell thickhess. In the circumferential direction
the total stress is the sum of a upiform circumferential hoop streas due
to radial expsnsion or contraction of the shell and & lineariy distributed
normal stress equal to the product of Polsson's ratio and the total axial
stress [ see Refs (3)]s Thus the t:oéal stresses at the surfaces of the
shell are

o, = S/t ¥ Mt/(21) (6)

and

Op = VO + Bw/a (7)

in which a9, and Ogs respectively, are tho total axial and circumferential
stresses in the snell considered positive in tension, M is the bending
moment and I the moment of inertia of the shell plating, each for a unit of
eircumferential length of the shell, It should be noted that in these
equations the minus sign refers to the outer surface and the plus sign refers
40 the inner surface of the shells The moment can be expressed in terms of

the deflection of the shell as follows [Ref, (3)]:

Muﬁdg (8)
dx

Thug egquation (6) can be rewritten as

2
o, = LB/20-D)1x SB ¢ (1 )ap/ne’) (9
dx

in which the plus slgn now refers to the outer surface of the shell,




For the purpose of the present report equations (7) and (9) re~
quire evaluation only at the inner surface of the shell at the ring and at
the outer surface of the shell at the plane mid-way botween rings. From

equations (7) and (9), the corresponding stresses are

”~

<
ot - - (B2 VNS0 v (= VIep/Eth)  (10)
Xp T
3
O, = VO + I/ (11)
° 2 d2w 2 2
¢ = = [Et/2(1- v )I(—3) + (2~ v)ap/Bt ] (12)
*m dx® m
Oa o] 1
g@m Vo, + Ewg/a (13)

in which the superscripts 1 and o, respectively, refer to the lnner and outer
shell surfaces, and the subscripts r and m, respectively, refer to the ring
and plane mid-way between rings,

Evaluation of equation (5) and its second derivative at x = x, = L
and X = x; = O results in the following final expressions for the stresses
defined by equations (10) to (13):
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cx1~ - [Et/(}.-vz)L ] {nl(lkzw + (l~v)aL p/2Et + (K k.k »efKA)(&L/Kz)? (14)
¥ i N

g, - Vo, + (B/a) {(MKyfpL)F + KpkpLl (15)

2.2 2
0,0 = [86/(1= v LT nCo” + PP — (1 et przme”
m

s {(92 + fz)xlxskl - 2efK6 - (fz,- ez)xel(Sfoz)‘} (16)

og° = val + (E/a) { [nKlK7 ~ (1/2)1 + (KlK't’kl - KB)(eL/Kz)} (17)

m
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in which

2y

2
k. = efK, - (1/2){(f - ™)K

1 3 2

2 2
k2 = efK3 + (1/2)(£" - @ )K2

2 2
Ky = l/[AnK2/Ar + ef(e” + £%)(cosh 2e - cos 2f)]
52 = ¢ 8ln 2f + f sinh 2e

K3 = ¢ sinh e - f sin 2f

K4 =:c08 2f + cosh 2e

K, = f cos f sinh e -~ ¢ 8in f cosh ¢

5

Ké w co8 f cosh e
K7 w @ sin f cosh e + £ cos £ sinh ¢

KB = 8in f sinh e
The remailning symbols have been defined previously. Equations (14) to
(17) are used in the dctermination of the shear strain energy quantities
which are required in the present anslysis,
If Ref. (3) is used to supplement the present report, it is useful
to note that the important parameters of that report are defined in terms

of those of this report as follows:
Wm (/17 (/) = (1/KK,)])

GuwWT




U= - 2iKy/L 3= (1)
H= - 1K,/ L |
2 . fz
3o~ (21(5/2 K%(e v £)
3= 2k2/L K,
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of the accurate solution of equations (22) and (23), since these equations
contain transcendental functions of the pressure p and, therefore, must
be solved by an iteration procedure.

The actual procedure applied in the present report for the
numerical solution of equations (22) and (23) is as follows. For a given
cylinder, ¢ and d of equations (4) are taken equal to k and the stresses of
equations {14) to (17) computed as linear functions of p and ¢ .+ Then the
elastic limit pressure pL is computed from equation (22) by setting ¢ = 0.
The elastic limit pressure is used as a basis for a first approximation in
the determination of the linearized maximum allewable pressure Py o This
quantity is determined from the simultaneous solution of the quad:atic
equations in p» and 9 (equations (22) and (23) with e = £ = kL). To accom-
plish this calculation, equations (22) and (23) may be plotted, or as in
the calculations of the present reporf, transformed into equations suitable
for a successive épproximation solution, Equation (22) is written as a
quadratic in descending powers of 4 , and equation (23) as a ouadratis in
descending powers of pe Based on the results obtained from the elastic limit
pressure calculation (8 = 0), a first approximation is made to the allowable
pressure. Substitution of this quantity into the ouadratic in § and sub-
sequent solution of the resulting equation yields a first approximation to
9 o« This quantity is then introduced into the quadratic in p, and a second
approximation te p is computeds The procedure outlined is repsated until
two successive sets of solutions for p and § are sufficisently close to each
other. If more than onc possible solution exists, that sclution which con-
responds to the lowest pressure which is greater than the elastic limit
pressure is the significant soiution,

The final value of p obtained as described abeve is then used

as a basis for a first approximation in the numerical golution of equations (22) and

- 17 -




¢ .
If the yleld stress Gi of the material is determined by a uniaxial

compression or tension test, then the limiting value of the shear strain

energy for the material tested can be computed from equation (18) and is
U = (1/66) & (21)
SL 1

Substitution of equation (21) into equations (19) and (20) yields the follow-

ing equations which represent yield criteria for the shell at a ring and at

the plane mid-way between rings.

i.2 2 1.1 2
(g ) ()" = (G ) = o (22)
0.2 o .2 o 0 2
(9 )"+ ()7 = (0 NG ) = % (23)

If the uniaxial yleld stresses are different for compression and tension, it
1s suggested that ths former quantity be used since the siresses »ppearing

in eoustions (22) and (23) are predominantly compressive,

DETERMINATION OF MAXTMUM ALLOWABLE FRESSURE

The maximum allowable pressure p, can now be defined mathematically
as that pressure which together with inelastic edge distortions 9 £ 0) pro-
duces axial and circumferential stiresses of magnitudessuch that equations (22)
and {23) are satisfied simultancously. Accordingly, the elastic limit
pressurs pp is defined as that pressure for which equation (22) is satisfied
for 9 = 0. In addition, if in equations (14) to (17) e and f are each taken
equal to kL, (p = 0), then the beam column effect of the second term on the
left-hand side of equation_(l} is omitted asnd the stresses become linear
functions of p and € , The latter fact can be used for the determination of
a first approximation to the simultancous solution of the non-linear equations

(22) and (23)s Such a starting point is necessary for an efficient determination

- 1 -




(23) for e ¢ f £ kL., The first approximation for p is introduced into
equations (22) and (73), and the resulting quadratic equations in 9 are sach
solved, In general, the value of & obtained from oquation (R2) differs from

that obtained from equation (23). Ifgsuch is the case, a second approximation

for p is made and equations (22) and §23) are again solved. The procedure
is continued until that p is found which yields, within the desired accuracy
for p, equal values of 4 . The final value of the pressure P, thus obtained

is the maximum allowable pressure and the corresponding 9 is a measure of

1 SEE ﬂ‘ﬂ-m‘lﬂ&m'«l
[ ol IR S sl et

the associated inelastic deformaticn of the shell at the rings It is useful
in the calculations to note that, in accordance with the sign convention

adopted, only positive values of § and p require conslderation.

] ;?
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In the theory of beam coluﬁms a measure of the importance of the
beam-column effect is the ratio of tk;e applied axial load to the theoretical
eritical load., Similarly for the present problem, such a eriterion can also
be established. However, the theoretical elastic buckling load for this
problem involves the solution of the transcendental equation obtained by
taking (l/Kl) = 0 [ ses equation (5b)] and therefore is not readily obtal nable,
The present calculations show that a good indication of the importance of
the bsam-column effect is simply the ratio of the hydrostatic pressure applied
to the cylinder to the hydrostatic pressure which would produce axially symmetric
buckling of the cylinder with rings disregarded, This latter pressure is giv-en
by -ﬁcr" ZE‘bz/az[ 3(1-~ \.vz)]l/2 and corresponds to that value of p which makes
¢ = 0 in equstion (4). The axial stress produced by -ﬁer is the well-known
theoretical buckling stress for axially symmetric buckling of a long thin-
walled shell, 'd’cr = 0,605Et/a . Thus, in the present calculstions it is ssen
from Table I and Fies, (3) to (5) that for qy = 100,000 lbs, per sq. in,,

p ao,’ﬁcr- 04943, 0,485, and 04299, respoctively, for cylinders 1, 2, and 3.
Accordingly, the correspending relative importance of the beam—column effect
as measured by the ratio (pac- pa)/pao is 0.170, 0,127, 0,007,

The inelastic angular distortion § calculated for each of the three
eylinders iz plotted against o I‘:I.rx Fig, (6) and compared therein with the
corresponding angle o Thich is obtained from calculations which neglect the

beam—~column effect, It can be seen that § may be larger than or lsss than

'50 depending upon the cylinder characteristics,




CONCLUSIONS

The results of the caleculations described previously indicate
that the maximum zllowable hydrostatic pressure on a transversely reinforced
_ thin-walled shell may considerably exceed the elastic limit pressure, Further-
more, the maximum allowable and elastic limit pressures may be influenced to
a large extent by the beam-column effect of the axial portien of the load,
A simple measure of the effect is the ratio o#f the pressure calculated without
the beam-column effect to the critical pressure for the unreinforced shell,
If this ratio is smrli, the boame-column effect is likewise smsll, If the
ratio is large, .e allowable and elastic limit pressures p, and Py » .
respectively, as well as their difference (p - pL) can be appreciably smaller
than the corresponding quantities P, > pL s (p - pL ), respectively,

80 8
calculated without. conglderation of the beam~column ef,t‘ect.
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